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I.  INTRODUCTION 

The objective of the High-Progressivity/Density (HPD) Propelling 
Charge Concepts Program is to investigate the feasibility of achieving 
significant increases in muzzle velocity, for a given maximum pressure, 
over that achieved hy conventional systems now being used. Moreover, this 
performance increase is to be obtained using existing propellant 
formulations and without invoking nonconventional ballistic concepts such 
as traveling charge or light gas guns. 

The velocity achieved by a particular projectile as it exits the 
muzzle of a gun is principally the result of the pressure history acting on 
its base while it travels down the bore of the tube. The maximum pressure 
value allowable is usually dictated by gun tube design, but the actual 
pressure profile, apart from this maximum value, exerted on the projectile 
base is a result of the competition between the quantity of gas produced by 
the burning propellant and the amount of free volume available. At the 
beginning of the event, the projectile is not moving or is moving only very 
slowly, so the pressure rises rapidly as the propellant burns. However, as 
the projectile speeds up, it eventually creates additional volume much 
faster than gases are created to fill it. As a result, in virtually all 
cases, the pressure falls off much more rapidly than desired. 

Past attempts to counter this problem have most often involved the use 
of propellant configurations exhibiting a continuous increase in burning 
surface as a function of distance burned (e.g., 7-, 19-, or even 37- 
perforated grains). Less conventional approaches have included 
consolidated propellant charges (i.e., one or more compacted aggregates of 
Individual propellant grains), offering an increase in total available 
energy and the potential for an additional increase In burning surface 
during the ballistic event as the aggregate deconsolidates. However, 
programmability and reproducibillty of the deconsolidation event have 
presented serious challenges to the charge designer. 

Concepts being considered under the HPD Program include progtauitued- 
splitting, perforation-augmented burning, erosive-augmented burning, 
pressure-supported perforation-augmented burning, monolithic charges, 
programmed ignition, multiple granulations, and multi-layered propellants. 

The approach to be presented in this report is based on a concept by 
which the increase in surface area can be programmed to commence at any 
particular point in the burning process, rather than being operative as 
soon as the propellant is ignited. Thus, a very high loading density 
charge can be employed without excessive burning surface and 
overpressurization of the gun early in the ballistic cycle. Second, this 
increase in surface area Is, conceptually at least, unlimited. Thus, 
despite a desirably low initial burning surface, the programmed increase in 
burning surface after peak pressure can assure total burning of the charge 
before the projectile exits the gun, meeting the second major requirement 
for the use of very high loading density charges. This concept, applicable 
to a number of propellant configurations, has been exploited first as 
programraed-splitting stick propellant, and progress to date will be 
reported. 

Sfi&i&jfiS&lSSSsi^ 



II.  THEORETICAL 

Many gun systems utilize 7-perforated granular propellant as the main 
propellant charge. If the same charge weight as used in the 7-perforated 
charge is assumed to burn such that the maximum velocity is obtained (a 
constant pressure calculation), a velocity increase of only about 5% over 
that of an optimized 7-perforated charge is predicted. Therefore, not only 
a near-optimum burning surface profile (i.e., extremely progressive) but 
also more total energy (i.e., greater charge weight) is required in order 
to achieve greater increases in velocity. 

Particularly attractive in respect to both of these requirements is 
the programmed-splitting propellant concept, which effectively decouples 
the burning surface after peak pressure from tha»: preceding it. This 
concept provides for a discontinuous increase in burning surface at any 
desired regression distance, at which point the burning surface reaches an 
embedded array of slits and the flame envelopes the additional surface 
area. A programmed-splitting stick (see Figure 1) was selected for initial 
vStudy because it seemed to be manufacturable with current extrusion 
technology, to offer a very high loading density, and to provide the fault- 
tolerant, ignition benefits of a stick propellant configuration. The same 
concept can be applied to slab or scroll propellant configurations, but 
manufacturing problems were felt to be greater. Any of these 
configurations, of course, requires that the ends or edges where the slits 
are initially exposed be adequately inhibited to prevent the flame from 
prematurely reaching the slits. NOSOL 363 propellant (Lot RAIM-2-73) was 
chosen for this initial effort because it is extruded without solvents and 
potential problems with drying would be reduced; in addition, the sheet 
stock was readily available. 

The programmed-splitting stick propellant configuration was modeled as 
a cord until the slits were reached and then as long pie-shaped wedges. 
The sills were assumed initially to occupy no volume. The optimization 
process involved first determining the proper cord geometry to achieve the 
desired maximum pressure and then defining the slit parameters (number and 
dimension) to raise the pressure to this same value once again, as shown in 
Figure 2. Clearly, a multiplicity of such grain configurations could be 
employed to achieve an even greater number of peaks, approaching the 
optimal fiat pressure-time curve. However, even the single, basic 
configuration with three or four slits of the sa.oe dimension (yielding six 
<>r eit*ht pie-shaped wedges) was calculated to provide the desired increase 
in performance for the 155-mm howitzer. 

III.  MANUFACTURING EXPERIENCE 

A die and stake, shown in Figure 3, were designed and fabricated for 
manufacturing programmed-splitting stick propellant of the calculated, 
nominal dimensions for the 155-mra howitzer. The stake was made by 
soldering four hulf-vaueb i>> one whole vane, all 0*254 mm thick, making a 
three-vane stake. The vanes were then soldered into a base which fit into 
the die. Both cord propellant and programmed-splitting stick propellant 
were extruded  for closed  bomb firings.   The cord propellant was made  by 
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Figure i.  Programaed-Splitting Stick Propellant 

300 

TIME  (mi) 

Figure  2.     Calculated  Pressure-Time  Profile  for  Prograramed- 
Splitting  Stick  Propellant 
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Figure 3. 

EM9 VIEW OF ASSCMH.Y 

Die Design for Programmed-Splitting 
Stick Propellant 

removing the stak« and extruding through the same die. Both configurations 
expanded after extrusion, with the programmed-splitting stick expanding by 

3% and the solid cord expanding 5.6% on the outside diameter. 

Initial extrusions were successful in that the slits remained blind, 
never breaking through to the outer lateral surfaces, despite the small 
webs. The overall average web was 0.b86 mm, but, as the vanes, once 
assembled to the base, were nol all of the same dimension, a smaller-web 
region resulted where the average was 0.546 mm and the minimum was 0.483 
tana. The discrepancies between the diameters associated with the die vanes 
and those with the resulting propellant slits varied, with the largest 
deviations associated with the largest vanes. Moreover, the slits in the 
propellant, rather than having no volume, exhibited approximately the same 
width as the vanes. This resulted In an Internal void volume of 
approximately 10%. It was also noted that the edges near the center of the 
grains had small irregularities eimilar to the edge of a saw blade. Table 1 

summarizes all pertinent dimensions. 

After the first two-pound extrusion of NOSOL 361, the vanes were found 
to be loose and were resoldered. Subsequently, while attempting to extrude 
a sample ot JA2 propellant sheet stock, the stake separated from the 
base. New stakes have been machined from one piece of metal but, as of the 
time of this writing, have yet to be tried. The procedure for defining the 
new stake and die dimensions was to assume that the slit diameter would 
remain the same as the vane diameter and citat an expansion of 3% would 
occur in the propellant web. Further, the tips and the edges of the vanes 

were filed to a sharp edge in an attest to reduce slit width. 

1 s..) 
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TABLE   I.     SUMMARY  Of   DIE AND PROPELLANT  DIMENSIONS 

DIE AND 
STAKE 

(FROM DRAWING) 

ME AND 
STAKE 

(MEASURED) 

PROGRAMMED 
-SPUTTINC 

GRAIN 
(MEASURED) 

■Ml 
(MIN) (MAX) 

SOUD CORD 
GRAIN 

(MEASURED) 

(MIN)   (MAX) 

MAM (X) 540 SJ1 «.07 

(S.3S)   (0.17) 

0.22 

(0.20) (0.24) 

StOT MAM (Yl) 4.70 4.5S 
4.S7 

(4.34)    (4J3) 

(Y2) 4.70 4.7S 
4.70 

(4.47)    (4.00) 

mi 4.70 4J3 
5.0* 

(4.00)    (SJ1) 

AVEKAtf 4.70 4.72 4.71 

SLOT WIDTH (Z) 0JS4 0.2S4 0.2S4 

Wf • (W) 0.S04* O.SOS# 0.080 

(0.4*3) (0.014) 

»CALCULATED 

IV.  EXPERIMENTAL RESULTS 

Closed bomb firings were conducted in an attempt to determine whether 
the programmed-splitting propellant burns as mathematically modeled and to 
test the effectiveness of different methods of sealing the ends of the 
grains. Also, test« were performed statically in a high pressure oil bath 
to evaluate the end seals. 

A closed bomb is a closed vessel with no moving boundaries In which 
propellant is burned. The pressure-time curve is measured, ™^ with 
certain assumptions (e.g., instantaneous ignition, normal regression on all 
propell&nt surfaces, and a given mass fraction as a function of distance 
bu *) one can deduce the rate of surface regression (i.e., the burning 
rai.e/ as a funcrion of pressure. 

A 210-cc closed bomb was chosen for these studies because of the 
limited amount of propellant available. All samples were cut to 9.<» cm in 
length, the longest the bomb would accomaodat e. Omf igur.it ions t;-st>'! **«*■•• 
both cord and programmed-splitting, the latter with <* variel» of end 
conditions, including open-ended, asphalt-covered, acetone-solvated, 
acetone-sol vated covered with coll old ion, covered with a sra.ill aluminum 
cap, and capped with NOSOl. 163 discs bonded with an isocyanate cross linking 
ag«»nt. In addition, a previously extruded, single-perforated grain of the 
same composition but a different length was tested to allow comparison with. 
past results. 

11 
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Since the closed bomb data reduction program does not include a form 
function to describe provrrammed-splitting configurations, the analysis was 
performed assuming the grain to be a solid cord, yielding an apparent 
burning rate. However, by assuming the burning rates obtained for the 
sample of actual cord propellant to be applicable to the programmed- 
splitting grains as well, we were able to deduce burning surface profiles 
from the mass-generation rate data, revealing more directly the behavior of 
the programmed-splitting event. Theoretically, the apparent burning rate 
curves should have resembled Figure 4 and the surface area profiles should 
have looked like Figure 5. 

A problem was encountered in the reduction of closed bomb data because 
of the internal voldage associated with the blind slits. There were 21 
grains used in each firing, but the computer program calculated (from the 
density, mass of propellant, and grain dimensions) that there were 
approximately 19 grains. This led to apparent burning rates and surface 
areas which were higher ac all points than theoretically expected; however, 
it should not have changed the shape of the curves. 

10-1 
10 too 

PRESSURE (MPa) 

500 

Figure 4.  Theoret leal Apparent Burning Rate Profile for 

Hro^r.inuned- Splitting Stick Propel lane 



T 
0.2 0.4 OS 0J 

FRACTION MMNE9 
1.0 

Figure 5.  Theoretical Surface Profile for Programmed- 
Splitting Stick Propellant 

Another problem with the reduction technique which could have changed 
the shape of the curves was the smoothing technique applied to the 
pressure-time output from the closed bomb firings. Such procedures Lend to 
smooth out any abrupt changes, such as that expected with a discontinuous 
increase in surface area. To probe this concern, a computer-generated 
pressure-time curve (generated using a true, programmed-splittlng form 
function) was smoothed in the same manner as the real output from a closed 
bomb firing. Indeed, the expected, abrupt changes in the reduced data were 
rounded but not to a degree that would prevent recognition of the splitting 
event. 

The burning rates for the cord, shown in Figure 6, and for the single- 
perforated granulations wera consistent and also agreed well with previous 
NOSOL 363 closed bomb data. These burning rates were therefore used as the 
baseline and for the reduction of all burning surface profiles. 
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Figure 6.  Burning Rates for Solid Strands of N0S0L 363 Propellant 

The apparent burning rates for the open-ended, prograramed-splitting 
configuration (reduced as a cord) showed considerable variability in the 7- 
35 MPa pressure range and, as expected, manifested about a 3-fold increase 
over the burning rates of the cord for the entire pressure range (see 
Figure 7). The accompanying burning surface profiles are provided in 
Figure 8. Figure 9 displays the apparent burning rates for the sample with 
asphalt-covered ends. Figure 10 presents the apparent burning rates for 
the sample whose ends had been solvated in acetone to close the slits, and 
Figure 11 shows the corresponding surface profiles. A comparison of the 
averaged values of the burning rates for the cord ana the apparent burning 
rates for the three programroed-splitting samples is shown in Figure 12. 

Other attempts at closing off the ends of the blind slits in the 
programmed-splitting propellant samples, such as the use of aluminum end 
caps and N0S0L 363 discs as mentioned earlier, were no more effective than 
just solvattng the ends with acetone. The discussion will therefore be 
centered around the configuration with acetone-solvnted ends. 

Grains with acetone-solvated ends similar to those used in the closed 
bomb studies were also pressurized slowly in an oil bath, in 70-MPa 
increments, to over 500 MPa. The samples were inspected after esch 
increment of pressurlzation. One out of the ten pressurized had oil in the 
voidage after the first 70 MPa; the rest all remained intact with no oil in 
the voidage over the entire pressure range. 

14 
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Figure  7.    Apparent  Buring  Rates  for  Programmed-Splitting  Stick 
Propellant with Open. Ends 
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Figure 8.     Burning  Surface  Profiles   for  Programs-Splitting 
Stick  Propellant with  Open  Envis 
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PRESSURE (MPa) 
Figure 9. Apparent Burning Rates for Programmed-Splitting 

Stick Propellant with Asphalt-Covered Ends 

10 100 
PRESSURE .'MPa! 

Figure 10.  Apparent Burning Rates for Programmed-Splitting 
Stick Propellant with Acetone-Solvated Ends 
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Figure 12.  Averaged Apparent Burning Rates 
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V.     DISCUSSION 

Successful application of the programmed-splitting stick propellant 
concept in the gun environment requires that the discontinuous increase in 
surface area must occur only after maximum pressure has occurred. This, in 
turn, requires that the flame not reach the blind slits prematurely (i.e., 
by any means except the planned burn-through of the web). The flame must 
be prevented from entering the ends of the grains and the grain must not 
break, opening a path to the blind slits. Therefore, most of the 
discussion will address  this aspect  of  the problem. 

From Figure 12, it would appear that the asphalt covering did not 
prevent the flame from getting to the slits since the apparent burning 
rates for that sample are higher in the low pressure region than for the 
cords or the sample with acetone-solvated ends. The asphalt seems, 
however, to have acted as an inhibitor on the ends themselves, since the 
apparent burning rates are not as high as for the open-ended grains. 
Further, no progressiv!ty is revealed, as the curves for the samples with 
asphalt-covered and open ends are nearly parallel to that for the cord 
propellant. 

Figure 12 shows a small increase in the apparent burning rates r*t 
low pressures for the samples with acetone-solvated ends. This it <c, 
however, totally unexpected since the reduction procedure will, becaus it 
Ignores the presence of voidage in the slit region, underestimate the t ral 
number of grains (and accompanying initial surface) and thereiore 
overestimate the apparent burning rates by about 10X. We further expect to 
see the apparent burning rates increasing faster than for the cord 
propellant and the curve then becoming parallel to that for the open-ended 
grains. What is surprising is that the burning rate curve should start to 
rise at such a low pressure (50 MPa) and continue to exhibit progressivity 
long after expected web burn-through at  3bout   125 MPa! 

We next call attention to the burning surface profile for this same 
sample with acetone-solvated ends, shown in Figure 11 along with a 
theoretical profile for the programmed-splittlng grain. The surface 
profile seems to be a much belter discriminator for the processes of 
interest to us here. Again we see an early increase around 50 MPa, 
followed by incremental Increases until the curve approaches the 
theoretical curve at a point long after web burn-through should have 
occurred. 

There are three effects which could have been responsible for the 
unexpected, early rise in the apparent burning rates and the burning 
surface profile. They are data-smoothing during the reduction procedure 
(mentioned earlier), variations in the web, and early exposure of some 
portion of the blind slits. In order to study each of these possibilites, 
calculations w»re made with a computer code to simulate the programmed- 
splitting configuration burning in a closed bomb. The form function was 
programmed to assume burning on lateral and end surfaces until web burn- 
through and then on the remaining lor.;*, pie-shaped wedges. It was also 
assumed that the slits occupied no volume. The resultant pressure-time 
curve   served   as   input   to   the   existing   closed   bomb   data   reduction   program, 
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and apparent burning rates and surface areas were calculated using minimal 
smoothing (no smoothing on the pressure-time curve and a 5-poiut smoothing 
bridge to obtain dp/dt) and then with the normal smoothing procedure (3 25- 
point smoothing bridge on the pressure-time curve and a 15-pcint bridge to 
obtain dp/dt). The apparent burning rate curves are shown in Figure 13, 
and the surface area ratio curves are displayed in Figure U. It is 
apparent that smoothing was not responsible for the unexpected closed bomb 
results. 

Other synthetic runs were performed to investigate the possibility of 
the web variation being large enough to account for this effect. A run was 
made with 1/3 of the charge weight having a web equal to the smallest 
measured web (0.483 mm) and the rest of the charge having the average of 
the smallest web (0.546 mm). An increase in surface area was then 
indicated at approximately twice the mass fraction burned (which translates 
also into twice the closed bomb pressure) as that where the observed, 
apparent burning rate curve started to rise. Even in combination with 
smoothing effects, this did not provide an explanation for observed 
behavior. 

A third series of synthetic runs was made with 1/3 of the charge 
configured such ^hat burn-through of the web occurred at 50 MPa and the 
remaining portic having a web of 0.546 mm (the average of the smallest 
web). These conditions, of course, reproduced the observed, early increase 
in the burning surface, but they also delayed burn-through of the 0.546-mm 
web until a pressure which was some 35 MPa higher than the value where 
burn-through for a 0.545-mm web would have taken place. This result 
approximated what we saw in the surface profiles for the samples with 
acetone-solvated ends, and, along with the static test results indicating 
grain survivability at high pressures, is consistent with an explanation 
for the observed clt^ed bomb results based on early flame penettaLiua into 
a significant portion but not a majority of the blind slits. 

Many other problem areas remain to be investigated, including the 
effects of aging on any successful end-closure techniques, sensitivity of 
performance to web variations, the Influence of propellant mechanical 
properties, and temperature effects. At the same time, alternative HPD 
concepts warrant consideration in the near future. 
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CONCLUSIONS 

Substantial performance gains are theoretically possible from rather 
straight-forward 11PD propulsion concepts using existing propellant 
technology. 

The feasibility of manufacturing a programmed-splitting stick 
propellant has been demonstrated using existing extrusion technology« 

Techniques for sealing the ends cf programmed-splittinp stick 
propellant have been partially demonstrated, offering significant hope for 
demonstrating this HPD concept in the gun environment within the coming 
year. 
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